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Abstract—Clustering problem is a task of dividing a set of
objects (also called members) into different groups (called clus-
ters) based on object’s characteristics. Members of a group will
have more similarities in comparison with those in other group.
This report discusses a traditional clustering method called K-
Means algorithm from mathematical perspective. Additionally,
an experiment is provided to examine the algorithm in two
dimensional space then an application in image compressing.

I. INTRODUCTION

Clustering problems arise in many different applications:
machine learning data mining and knowledge discovery, data
compression and vector quantization, pattern recognition and
pattern classification. [1]

The goal of K-Means Algorithm is to correctly separating
objects in a dataset into groups based on object’s properties.
For instance, objects could be house and their properties are
size, number of floor, location, power consumption per year,
etc. The goal is to classify house dataset into groups which
are luxury, average, poor. In that case, all properties of houses
have to be processed to turn into number to create a vector,
this process is called vectorization.

Another example, take each points in a panel as a objects
and each object has two properties which are x-axis and y-axis
location. And input K = 3. The algorithm correctly finds the
cluster. (Fig. 1.a)

(a) Input: N = 200, K = 3 (b) Output

Fig. 1: K-Means on 2-dimensional Points

II. MATHEMATICAL ANALYSIS

A. Input and Output

The K-Means Algorithm takes a set of observations X =
[x1, x2, ..., xN ] ∈ Rd×N where each observation is a d-

dimensional vector, N is the number of observations (mem-
bers) and the number of group (K,K < N) as two input. The
algorithm outputs the center of K group [m1,m2, ...,mK ] ∈
Rd×K and the index or name of group that each member
belonged to (label).

B. Lost Function and Optimization Problem

Suppose xi (i ∈ [1, N ]) belong to cluster k (k ∈ [1,K], the
lost value of observation xi is the distance from observation
xi to center mk in euclidean space, defined by (xi −mk).
Let’s yi = [yi1, yi2, ..., yiK ] be the label vector of each
observation xi, yik = 1 if xi belongs to group k and yij = 0
∀j 6= k.

Label vector of each observation contains only one digit 1
because each observation belongs to only one group which
leads to the following equation.

K∑
k=1

yik = 1 (1)

The objective is to minimize the within-cluster sum of
squares (variance), also known as square errors of, where each
square error of an observation xi from group mk is defined
by:

||xi −mk||2 = yik||xi −mk||2 (2)

From the equation 1, sum of all elements in a label vector
is equal 1. The square error of an observation is:

yik||xi −mk||2 =

K∑
j=1

yij ||xi −mj ||2 (3)

The square error of all observation is the sum of every
square error of in the given set of observation. The goal is min-
imize the lost function, equation 4 where Y = [y1, y2, ..., yN ]
be the matrix contains all label vector of N observation and
M = [m1,m2, ...,mK ] be the center of K groups (clusters).

f(Y,M) =

N∑
i=1

K∑
j=1

yij ||xi −mj ||2 (4)



The objective is also to find the center and label vector of
each observation which are Y and M, the two outputs that are
mentioned in II-A.

Y,M = argminY,M

N∑
i=1

K∑
j=1

yij ||xi −mj ||2 (5)

C. Solving Optimization Problems

There are two variable in equation 5 which are center of
each group of observation and label vector of each observation.
The problem could be solved by fixed each variable then
minimize the other variable.

1) Fixed M, center of observation group: Because all cen-
ters (M ) are constant, the objective is to correctly identify label
vector which is identifying the group that each observation
belonged to so that the square error in equation 4 is minimized.

yi = argminyi

K∑
j=1

yij ||xi −mj ||2 (6)

Retrieving from equation 1. Because only one element in
vector yi i ∈ [1,K] = 1. Equation 6 could be rewritten as:

j = argminj ||xi −mj ]]
2 (7)

The value of ||xi − mj ||2 is the square of distance from
observation to center of group in euclidean space. Concretely,
when M is constant, equation 7 shows that minimizing the sum
of square error could be achieved by choosing label vector so
that the center are closest to observation.

2) Fixed Y, label vector of each observation: When label
vector (Y ) are constant, the objective is to correctly identify
the center so that the square error in equation 4 is minimized.
In this case, the optimization problem in equation 5 could be
rewritten by the following equation.

mj = argminmj

N∑
i=1

yij ||xi −mj ||2 (8)

The equation 8 is a convex function and differentiable for
each i ∈ [1, N ]. Hence equation 8 could be solved by finding
the root of the partial derivative function. This approach will
make sure that the root is the the value that make the function
reach a optimum.

Let’s g(mj) =
∑N

i=1 yij ||xi − mj ||2 (retrieving from
equation 8 and take the partial derivative of g(mj):

∂g(mj)

∂mj
= 2

N∑
i=1

yij(mj − xi) (9)

The equation 9 is equal 0 is equivalent to:

mj

N∑
i=1

yij =

N∑
i=1

yijxi (10)

⇔ mj =

∑N
i=1 yijxi∑N
i=1 yij

(11)

The value of yij = 1 when observation xi belongs to group
mj . Hence, the denominator of equation 11

∑N
i=1 yij is the

number of observations that belonging to group mj and the
nominator

∑N
i=1 yijxi is the sum of all observations belonging

to group mj .
In other word, when Y is constant, the square errors could be

minimize by assigning the centers to the means of observations
in the groups that the observations belonging to.

D. Algorithm summary and Flowchart

1) Summary: The algorithm can be done by continuously
constantize Y and M, one each a time as discussed in II-C1
and II-C2.
Step 1.Clusters the data into k groups where k is predefined.
Step 2.Select k points at random as cluster centers.
Step 3.Assign objects to their closest cluster center according
to the Euclidean distance function.
Step 4.Calculate the centroid or mean of all objects in each
cluster.
Step 5.Repeat steps 2.

2) Flowchart: The following chart describe K-Means Al-
gorithm

Fig. 2: K-Means Algorithm Flowchart

E. Discussion

1) Convergence: The algorithm will stop after a certain
number of iteration because the square error function is a
strictly decreasing sequence and the square error is always
greater than 0. But this algorithm will not make sure that it
will find a global optimum because solving the equation 8 by
finding the root when the partial derivative is equal 0 will only
return the value for local optima but not make sure that local
optima will be a global minimum.

The following figure describe a case where poorly seeding
leads to a local optimum.



Fig. 3: Poorly Seeding K-Means

In this case, the square error is 6769747 which is about
4 times greater than the square error produce by figure 1b
(1614826).

2) Sensitiveness to initial cluster: K-Means algorithm re-
quires careful seeding, which means the final result is very
sensitive to the initial value of cluster. Numerous efforts have
been made to improving K-Means clustering algorithm due to
its drawbacks [2]

III. APPLICATION IN DATA COMPRESSION

An experiment will be reperformed where K-Means
algorithm is applied to reduce the size of image and outputs a
new image without the smaller number of color as compared
to the original one. This experiment is carried using Pascal
programming language and SwinGame API. Each pixel of
a image contains three elements which are red, green, blue
(RGB) value. Let’s each pixel be the observation (X) then the
number of pixel in an image be the number of observations.
Each observation has three properties which are RGB value.
In this case, K-Means algorithm is applied to identify K
main colors in that image.

(a) Original image (b) K = 4

(c) K = 7 (d) K = 10

Fig. 4: Image Segmentation on 2560x1600 image

The table below shows how file size of the original image
is reduced.

K (Color) File Size (KB)

Original Image 1572
10 1063
7 742
4 507

IV. CONCLUSION

K-Means Algorithm could be very simple and quick to
be implemented, the clustering problems where all clusters
are centroids and separated can be solved by the algorithms.
However, it will not be effective when the dataset and clusters
are more complex.

This report doesn’t come with new idea to improve the
effectiveness of the algorithm, the aim of the report is to
introduce the reader to a basic, entry level clustering methods
with some visual example on 2-dimensional and 3-dimensional
dataset.

V. FURTHER RESEARCH

The algorithm is simple to implement, however, the sen-
sitivity to initial centroids, and strict structure of dataset, etc
are those drawbacks of the algorithm which are undeniable
. Further research could be made to improve the value of
initial centroids. The traditional algorithm is depended on
randomness, research could also be made to discover a way to
make a fixed initial centroids. Furthermore, on a large dataset,
the algorithm could be very slow to converge. Research could
be spent to make the iteration stops earlier.
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